

2, Allée de l'Innovation 02200 Soissons Bureau d'études Agréé par l'ADEME

Entreprise SIMONIN SAS
Rue des Epinottes 25500 MONTLEBON

<u>Auteur</u>: Claire DAUTREMEPUITS, Sarl Clair'Environnement

I. Transports des personnes	9
I.I Déplacements domicile – travail	
Déplacement domicile-travail des salariés	
I.II Déplacements professionnels	13
I.III Préconisations:	
II. Fret	
III. Les données d'exploitation à l'état brut	27
III.I. Energie et chauffage	
III.II. Préconisations	
IV. Emissions non énergétiques	
V. Matériaux et services entrants	
VI. Services	34
VII. Déchets directs	
VIII. Emballages	
IX. Immobilisations	
X. Utilisation	45
XI. Récapitulatif	46
XII. Simulation Economique	
XIII. Extractions	

Contexte

Toute activité humaine, aujourd'hui, utilise directement ou indirectement de l'énergie. Comme 85% de l'énergie commerciale utilisée dans le monde consiste en des combustibles fossiles (charbon, gaz, pétrole et dérivés) il est également possible d'affirmer que toute activité humaine engendre directement ou indirectement des émissions de gaz à effet de serre. Les émissions indirectes correspondent tout simplement à celles qui ont eu lieu pour la fabrication des matières premières, produits ou services utilisés pour exercer son activité.

Depuis environ les années 80, une hausse de la température globale de la planète est observée (+ 0,6°C entre 1980 et 2000). Cette augmentation est due à l'effet de serre dont le principe est le suivant : une partie du rayonnement solaire traverse l'atmosphère et atteint le sol, qui en retour renvoi un rayonnement thermique qui, lui, est absorbé par les gaz à effet de serre (GES), ce qui réchauffe l'atmosphère. Ce phénomène, naturel, permet d'avoir une température moyenne sur Terre de 15°C contre -18°C si cet effet n'existait pas. Cependant, l'activité humaine est à l'origine d'une augmentation de la concentration des gaz à effet de serre dans l'atmosphère entrainant ainsi le réchauffement climatique.

En 1988, le Groupe Intergouvernemental d'Experts sur l'évolution du Climat (GIEC) est créé. Il a pour mission de cerner les conséquences éventuelles liées au changement climatique et d'envisager des moyens afin d'atténuer cette hausse de la température.

La Convention-cadre des Nations Unies sur le changement climatique, adopté à Rio de Janeiro en 1992 par 154 Etats, dont la France, a fixé pour objectif de stabiliser les concentrations de gaz à effet de serre, dans l'atmosphère, à un niveau qui empêche toute perturbation anthropique dangereuse du système climatique.

En 1997, le protocole de Kyoto fixe des objectifs chiffrés de réduction des émissions. La France s'est alors engagée à réduire ces émissions de 75% en 2050, par rapport au niveau de 1990 (année de référence).

Le Bilan Carbone® est un outil de l'ADEME permettant d'évaluer les émissions de gaz à effet de serre d'un territoire quelque soit son échelle, région, département ou collectivité, etc. Concrètement, le Bilan Carbone® permet :

- d'évaluer les émissions des GES pour connaître sa pression globale sur le climat,
- d'aider les élus dans la prise de décision grâce à l'analyse des émissions engendrées par des choix d'aménagement, des politiques particulières,
- d'identifier les marges de manœuvre et les actions possibles à court et long terme pour réduire les émissions de GES.
- d'apprécier le risque économique de la dépendance aux énergies fossiles et d'un accroissement de la pression réglementaire (taxe carbone, etc.).

Les caractéristiques de cette méthode sont :

La prise en compte de l'ensemble des gaz à effet de serre :

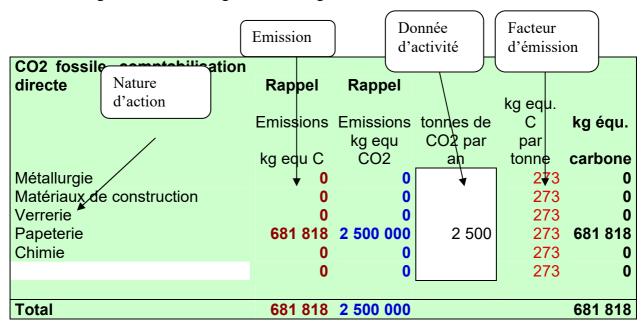
Différents gaz contribuent au réchauffement climatique :

- Dioxyde de carbone (CO₂),
- Méthane (CH₄),
- Protoxyde d'azote (N₂O),
- Hydrofluorocarbures,

- Perfluorocarbures.
- Hexafluorure de soufre (SF₆),
- etc.

Le Bilan Carbone® prend également en compte des gaz qui ne sont pas intégrés dans le Protocole de Kyoto (CFC, etc.).

La prise en compte des émissions directes et indirectes, sans notion de responsabilité :


Le Bilan Carbone® permet d'évaluer l'impact global d'une activité en matière d'émission de gaz à effet de serre. Elle prend en compte tout ce qui est nécessaire au fonctionnement de cette activité. Par conséquent, le Bilan Carbone® identifie des postes d'émissions et non des responsabilités. Il s'agit de déterminer des actions de réduction à mettre en œuvre et non des responsabilités.

Méthodologie de calcul des émissions

Les émissions résultant d'une action ne sont généralement pas mesurables directement.

La méthode propose de mesurer l'ensemble des flux physiques nécessaires à une activité (énergies, kilomètres effectués, etc.).

Pour déterminer les émissions d'une activité, il est tout d'abord nécessaire d'identifier la nature des actions prenant part à cette activité. Il faut ensuite collecter les données relatives à ces actions. Enfin, le facteur d'émission permet de calculer à partir de ces informations, les émissions de gaz à effet de serre générées. La figure suivante illustre ce mode de calcul.

L'évaluation des émissions repose à la fois sur l'existence et la disponibilité des données, mais également sur les facteurs d'émissions.

Les valeurs des facteurs d'émissions portent sur le cycle de vie d'une action.

Exemple:

L'amortissement d'un véhicule comprend sa fabrication, sa destruction et son recyclage. Ces étapes sont responsables d'émissions de gaz à effet de serre.

La fabrication de voiture implique l'utilisation de diverses énergies, telle que l'électricité, dont les facteurs d'émissions sont les suivants :

Energie primaire	Charbon	Gaz	Produits pétroliers	Electricité en Europe	Total
Tep*	38 000	462 000	119 000	1 390 000	-
Tonnes équ. C/tep	1,209	0,739	1,013	0,481	-
Tonnes équ.	45 942	341 418	120 547	668 261	1 176 168

^{*}Tep: tonne équivalent pétrole

Facteurs d'émissions pour l'activité de construction des véhicules terrestres

En ce qui concerne les matériaux utilisés pour construire une voiture, les facteurs d'émissions sont les suivants :

	Plastique	Aluminium	Verre	Acier	Caou-	Liquides	Autres	Total
					tchouc			
Kg par véhicule	100	70	40	500	50	70	170	1000
Kg équ. C par kg de poids	0,650	2,800	0,400	0,500	0,600	0,500	1,000	ı
Kg équ. C par véhicule	65	196	16	250	30	35	170	762

Facteurs d'émission de la production des différents matériaux nécessaires à la construction d'un véhicule d'une tonne

Une voiture, pesant en moyenne une tonne, engendre des émissions de fabrication de l'ordre de 1,5 tonne équivalent carbone, soit 1,5 fois son poids.

Pour toute activité humaine susceptible d'engendrer des GES, l'ensemble des données sont reprises dans le « Guide des facteurs d'émissions version 5.0 ». Ces données sont régulièrement mises à jour et l'ensemble des Bilans Carbone® fait sur des activités contribuent à l'enrichissement de cette connaissance.

Précautions et limites d'usage des résultats

L'approche globale et la méthodologie de calcul adoptées nécessitent de clarifier les limites et les précautions d'usage des résultats obtenus.

Unités de mesure des émissions

Le pouvoir de réchauffement global (PRG) permet de comparer l'impact climatique des différents gaz relativement au CO₂.

Gaz	PRG (à 100 ans)	Origine / utilisation
Dioxyde de carbone (CO ₂)	1	Combustion Pétrole, Charbon, Gaz
Méthane (CH ₄)	23	Décomposition anaérobie des molécules organiques ou pyrolyse des composés organiques (exploitation des combustibles fossiles, feux)
Protoxyde d'azote (N ₂ O)	296	Engrais azotés - industrie chimique
Hydrofluorocarbures	12 à 12 000	Goz ráfrigáranta at propádás
Perfluorocarbures	5 700 à 11 900	Gaz réfrigérants et procédés industriels divers
Hexafluorure de soufre (SF ₆)	22 200	madaticis divers

L'unité du PRG est donc l'équivalent CO₂ (eq CO₂).

Les inventaires d'émissions couvrant plusieurs gaz, s'appuient sur la notion de PRG. Ils s'expriment en un poids (par exemple la tonne) équivalent de CO₂ (t eq CO₂).

Les facteurs d'émissions permettent de convertir les données des activités (kilowattheure, kilomètre, tonnes, etc....) en un poids équivalent carbone (t eq C). Il existe une relation directe entre les unités t eq C et t eq CO₂, à savoir :

1 t eq
$$C = 3,67^1$$
 t eq CO_2

Certains inventaires évaluent uniquement les émissions de CO₂. Dans ce cas l'unité employée est la « t CO₂ ».

Les résultats du Bilan Carbone® se présentent sous forme de deux graphiques « t eq C » et « t eq CO_2 ».

Incertitudes sur les résultats

Les émissions de gaz à effet de serre découlant de l'emploi de la méthode Bilan Carbone® ne se mesurent pas directement mais à partir d'autres données. Il y a obligatoirement une incertitude associée à ces résultats. Cette incertitude sur le résultat est le cumul de :

- l'incertitude du facteur d'émission, qui est souvent une moyenne, et donc susceptible de présenter un écart avec la valeur exacte,
 - l'incertitude liée aux données utilisées (estimation d'une donnée).

Pour chaque nature d'action, il existe une case dédiée à l'incertitude.

6

¹ 3,67 est le rapport des masses d'une quantité de CO₂ par une même quantité de C.

Cependant, préalablement à toute action de réduction, il est incontournable de procéder à la mesure des émissions pour la situation de départ.

Pour cela, La société Simonin a décidé d'utiliser une méthode développée par l'ADEME, méthode dont la vocation est précisément la comptabilisation des émissions de gaz à effet de serre avec le cadre le plus large possible, dans l'esprit de ce qui mentionné ci-dessus.

Présentation de l'entreprise et de ses activités

L'entreprise **SIMONIN Frères** a été créée en **1967** par les quatre frères Simonin : Jean-Marie, Dominique, Joseph et Louis.

L'activité de départ est alors la fabrication de charpentes traditionnelles et menuiserie.

1972: LAMELLE COLLE, avec atelier de 1700 m²

1989: bureau d'études avec premiers postes DAO

1998: 1er Centre d'Usinage

2001: nouvel atelier de peinture

2006: extension atelier de collage

2007: nouveaux bureaux et showroom

2009: transmission de la société aux salariés

Christian BALANCHE, Christophe SEGARD, Didier DROZ VINCENT, Jean Paul FAIVRE, Daniel CUENOT, Joël FAIVRE, Francis TRIMAILLE, Sandra SIMONIN, Anne SIMONIN et Loïc SIMONIN.

+ Nouveau bardage style ajouré OPENLAM®

	2007	2008	2009
Chiffre d'affaires (en k€)	21 329 159 €	22 189 681 €	21 591 603 €
Effectif	90	92	97

Délimitations et périmètres de l'étude

L'entreprise Simonin s'étend sur 77 595 m² dont 20 400 m² de bâtiments comprenant :

Surface bâtiments couverts chauffés

Surface bâtiments non chauffés

Surface terrain

20 000 m²

400 m²

77 595 m²

La structure ainsi que les bardages des bâtiments sont en bois et n'émettent pas par conséquent de GES.

Côté énergie, 1 chaudière à copeaux de bois assure le chauffage de l'ensemble des bâtiments.

La gestion de la transformation de la matière première (bois) est assurée par la société ellemême, les émissions engendrées par son fonctionnement seront donc incluses dans le Bilan CarboneTM de l'établissement.

Mis à part pour les données des déplacements domicile/travail, qui sont issues d'un sondage, ainsi que les données des fournisseurs, l'ensemble des données utilisées pour les calculs sont les données de l'année 2009.

Les personnes ressource

Voici la liste des personnes ayant participé à la collecte des informations :

Monsieur Christian Balanche	Président Directeur Général
Monsieur Dominique Simonin	Intervenant
Monsieur Nicolas Brette	Service Communication et Commercial

Tableau 1 - Personnes ressource

Fiche de synthèse

Ces fiches ont pour but de favoriser l'appropriation des résultats par les personnes ressources ayant suivi le projet. Elles présentent les données utilisées pour les calculs, les émissions associées et les préconisations qui ont été faites au terme de cette étude pour réduire les émissions de la société SIMONIN, Montlebon.

Résultats par poste d'émission

Vous trouverez dans cette partie les graphiques détaillés des émissions de chaque poste d'émission, suivis des quelques pistes d'action (préconisations de réduction) qui ont été évoquées au cours de la réunion de restitution du 2 Septembre 2010.

I. Transports des personnes

Ce poste est, dans le cas de la société SIMONIN, important en terme d'émissions de GES. C'est pourquoi, une attention particulière sera portée à ce thème, aussi bien du côté de la quantification des émissions que des préconisations.

Tous les besoins de transport directement liés à l'activité de l'entreprise SIMONIN ont été pris en compte, à savoir :

- les déplacements professionnels des salariés (voiture train avion),
- les déplacements domicile travail des salariés,
- les déplacements clients.

L'ensemble du poste transport totalise 65,9 teq.C. (242 t eq.CO2)

déplacements de personnes en tonnes équ. C

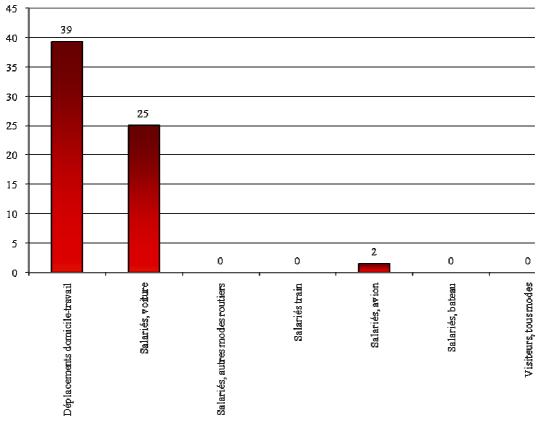


Figure 1 – Émissions de l'intégralité du poste Transport des personnes en éq C

déplacements de personnes en tonnes équ. CO2

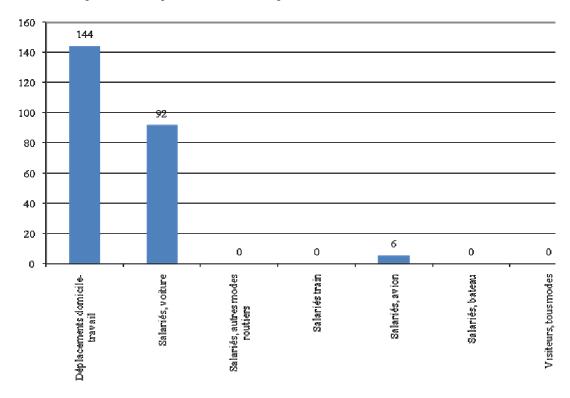


Figure 2 – Émissions de l'intégralité du poste Transport des personnes en éq CO₂

RECAPITULATIF PAR POSTE, EQU CARBONE

	Emissions	
TRANSPORT PERSONNES Eq. C	kg équ. carbone	t équ. carbone
Déplacements domicile-travail	39 376	39
Salariés, voiture	25 099	25
Salariés, autres modes routiers	0	0
Salariés train	13	0
Salariés, avion	1 500	2
Salariés, bateau	0	0
Visiteurs, tous modes	0	0
TOTAL	65 988	66

incertitude			Réductions visées, kg	
kg équ. carbone	%		court terme	long terme
7 654	19%		1 854	3 708
2 510	10%		1 849	7 397
0			0	0
3	20%		0	0
300	20%		0	0
0			0	0
0			0	0
10 466	16%	total	3 703	11 105
		% du poste	6%	17%

RECAPITULATIF PAR POSTE, EQU CO2

	émiss	ions
TRANSPORT PERSONNES Eq CO2	kg équ. CO2	t équ. CO2
Déplacements domicile-travail	144 378	144
Salariés, voiture	92 031	92
Salariés, autres modes routiers	0	0
Salariés train	48	0
Salariés, avion	5 500	6
Salariés, bateau	0	0
Visiteurs, tous modes	0	0
TOTAL	241 958	242

incertitude		
kg équ. CO2	%	
28 064	19%	
9 203	10%	
0		
10	20%	
1 100	20%	
0		
0		
38 377	16%	

Réd° visées, kg équ CO2		
court terme	long terme	
6 798	13 596	
6 781	27 123	
0	0	
0	0	
0	0	
0	0	
0	0	
13 578	40 718	

Le pourcentage de réduction a été évalué sur la base du développement du co-voiturage et compte tenu du fait que la répartition géographique du personnel est vaste et que les déplacements professionnels sont nécessaires à l'activité de la société SIMONIN.

I.I Déplacements domicile – travail

Suite à un sondage interne réalisé auprès des salariés, nous avons pu ventiler les émissions par mode de transports et par personne à l'initiative du déplacement.

Ainsi, nous distinguerons :

- les déplacements domicile-travail, du personnel, effectués en voitures particulières (parcours mixte).
- les déplacements domicile-travail, du personnel, effectués en voitures professionnelles (parcours mixte).
- les déplacements des co-gérants (voitures en location) et du commercial.

Les émissions des piétons et cyclistes ne sont pas prises en considération.

Nous supposerons une année de travail à 226 jours ouvrables.

Nous déterminerons donc les émissions dues aux déplacements domicile-travail par une estimation des véhicules.km. Le tableur Bilan Carbone ne faisant pas de distinction entre les véhicules « essence » et les véhicules « diesel » dans ce cas, nous pouvons extrapoler les résultats du sondage réalisé auprès des salariés.

Cependant, comme 6 personnes disposent de véhicules de fonction dont les consommations ont déjà été prises en compte, il faudra les retirer de ce total.

Afin d'approcher au mieux les émissions de GES des voitures professionnelles, nous avons fait des distinctions selon le type de motorisation (essence ou diesel), le type de parcours (urbain, mixte ou extra-urbain) et la puissance fiscale des véhicules.

Concernant les transports des salariés domicile-travail, nous avons reporté l'ensemble des trajets en kilomètres.

Déplacement domicile-travail des salariés

Une enquête a été menée auprès des employés afin de connaître les distances parcourues et les modes de transport utilisés. Sur un effectif de 97 personnes, 87 ont répondu au questionnaire dont les directeurs et commerciaux. Les données collectées sont les suivantes :

Tableau récapitulatif des déplacements journaliers Allé / Retour <u>hors repas de midi</u>.

Lieu d'habitation	Domicile - travail A/R	Nbre de pers	Total/an (226j)
Les Fins (25)	16 Kms	8	28 928 Kms/an
Gilley (25)	26 Kms	5	29 380
Les Gras (25)	16 Kms	1	3 616
Morteau (25)	7 Kms	14	22 148
Fleurey (25)	104 Kms	1	23 504
Valdahon (25)	76 Kms	1	17 176
Montlebon (25)	4 Kms	25	22 600
Le Bélieu (25)	28 Kms	2	12 656
Fournet Luisans (25)	32 Kms	3	21 696
Grand Combe (25)	8 Kms	6	10 848
Guyans Vennes (25)	46 Kms	3	31 188
La Chenalotte (25)	26 Kms	2	11 752
Le Russey (25)	40 Kms	1	9 040
Ville du Pont (25)	30 Kms	1	6 780
Damprichard (25)	78 Kms	2	35 256
Noël Cerneux (25)	22 Kms	2	9 944
La Longeville (25)	32 Kms	2	14 464
Flangebouche (25)	56 Kms	1	12 656
Les Combes (25)	20 Kms	1	4 520
Villers Le Lac (25)	20 Kms	2	9 040
La Bosse (25)	34 Kms	1	7 684
Fuans (25)	40 Kms	1	9 040
Saône (25)	126 Kms	1	28 476

Tableau récapitulatif des déplacements journaliers Allé / Retour <u>pour repas de midi</u>. Résultats à ajouter au tableau précédent.

Lieu de repas	Domicile - travail A/R	Nbre de pers	Total/an (226j)
Les Fins (25)	16 Kms	8	28 928 Kms/an
Gilley (25)	26 Kms	3	17 628
Les Gras (25)	16 Kms	1	3 616
Morteau (25)	7 Kms	12	18 984
Montlebon (25)	4 Kms	20	18 080
Le Bélieu (25)	28 Kms	2	12 656
Grand Combe (25)	8 Kms	4	7 232
La Chenalotte (25)	26 Kms	1	5 876
Le Russey (25)	40 Kms	1	9 040
Ville du Pont (25)	30 Kms	1	6 780
Damprichard (25)	78 Kms	2	35 256
Noël Cerneux (25)	22 Kms	2	9 944
La Longeville (25)	32 Kms	2	14 464
Flangebouche (25)	56 Kms	1	12 656
Les Combes (25)	20 Kms	1	4 520
Villers Le Lac (25)	20 Kms	1	4 520
La Bosse (25)	34 Kms	1	7 684
Fuans (25)	40 Kms	1	9 040

TOTAL Kms salariés : 382 392 + 226 904 = 609 296 Kms

(Environ 5 % des autos des salariés sont à moteur essence, le reste en diesel)

A ajouter déplacements des commerciaux (avec leur voiture professionnelle) domicile - travail:

- 1 (directeur) = 8588 Kms/an
- 1 (région Bourgogne) vient à l'entreprise 1 fois / semaine : 222 Kms A/R soit 7770 Kms/an
- 1 (italien) vient 1 fois / 2 mois : 692 Kms A/R soit 4152 Kms/an
- 1 (région PACA) vient 1 fois / 2 mois : 1080 Kms A/R soit 6480 Kms/an

TOTAL Kms = 26 990 Kms

I.II Déplacements professionnels

L'entreprise dispose d'une flotte de 6 véhicules de fonction. Les données obtenues à partir des contrats de location sont les suivantes :

Modèle	Service	Carburant	Km effectué / 2009
Audi A6	Direction (C Balanche)	Gazole	48 702 Kms
Audi A6	Commercial (L Lenoir)	Gazole	62 217 Kms
Audi A6	Direction (D Simonin)	Gazole	83 640 Kms
Citroën C4 Picasso	Commercial	Gazole	48 456 Kms
308 Peugeot	Commercial	Gazole	36 265 Kms
Volkswagen Touran	Commercial	Gazole	17 960 Kms

- Audi A6 Direction 15cv fiscaux
- Citroën C4 Picasso **8cv fiscaux**
- Peugeot 308 8cv fiscaux
- Volkswagen Touran **8cv fiscaux**

Selon les résultats de l'extrapolation, l'utilisation de la voiture pour le poste déplacements de personnes représente au total 64,4 teq.C par an.

- 39,4 teq.C proviennent des déplacements motorisés des salariés (soit 60 % des émissions liées aux déplacements de personnes)
- 25 teq.C proviennent des déplacements professionnels (soit 40 % des émissions liées aux déplacements de personnes)

I.III Préconisations :

- 1) avant toute chose, il faut informer et sensibiliser les personnes sur l'impact de la voiture sur l'environnement.
- 2) favoriser le covoiturage pour le personnel. Cela pourrait être facilité par la mise en place d'un panneau d'affichage « covoiturage » prenant la forme d'un panneau de réservation et incluant des informations sur les destinations, les horaires, les quartiers d'habitation...).
- 3) lors du renouvellement du parc automobile, la puissance fiscale sera prise en compte dans le choix des véhicules afin de limiter les émissions des GES (émission inférieure à 120 g de CO2/km). Nous soulignerons que certains véhicules diesel n'émettent pas plus de 80 g CO2/km contre plus de 180 pour d'autres
- 4) veillez au bon entretien des véhicules (contrôle annuel anti-pollution, pression des pneus, nettoyage des filtres à air...)

NB: des pneus sous gonflés augmentent la résistance au roulement, ce qui réduit la durée de la bande de roulement, augmente la consommation de carburant et démultiplie les risques d'explosion. Un seul pneu sous gonflé de 0,56 bar accroît la consommation de carburant de 4 % et réduit sa durée de vie de 15 000 kilomètres (la duré de vie d'un pneu dans des conditions standard d'utilisation est de 50 000 kilomètres).

NB: un filtre à air encrassé peut accroître la consommation de carburant de 3% à 5%.

- 5) Optimisation des circuits des commerciaux :
 - Elaboration d'une fiche de secteur avec des circuits spécifiques à chaque région afin d'optimiser les déplacements des commerciaux chez les clients anciens et nouveaux.
 - Rationalisation des déplacements à l'étranger, maitrise de l'impact des déplacements.
- 6) Non renouvellement d'un véhicule de direction et de sa fonction par une cession d'activité.

II. Fret

Le poste « Fret Fournisseur » est, du fait des livraisons de matières premières (bois et quincaillerie) un poste important. Pour obtenir les estimations d'émissions les plus proches possible de la réalité, nous avons calculé le nombre de kilomètres effectués pour livrer la société SIMONIN à partir de la liste des fournisseurs, de leurs coordonnées et des fréquences de livraison.

émissions liées au fret, en tonnes équ. C 450 390 400 350 300 250 200 150 100 50 16 10 0 0 0 0 0 0 Fret interne Fret aérien fournisseurs Fret routier, clients Fret aérien, clients Fret ferroviaire, clients Fret maritime et fluvial, clients Fret routier, fournisseurs ferroviaire, fournisseurs Fret maritime et fluvial, fournisseurs

Figure 3 : Émissions de l'intégralité du poste Fret en éq ${\cal C}$

émissions liées au fret, en tonnes équ. CO2 $\,$

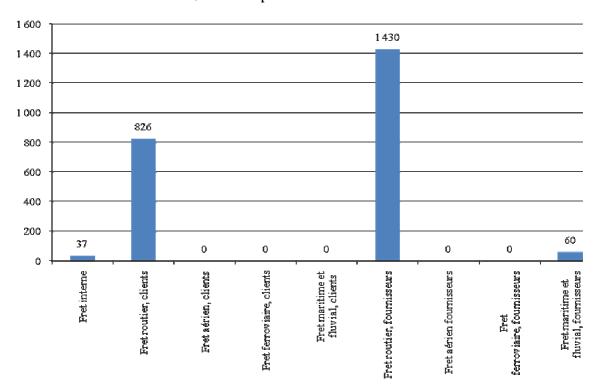
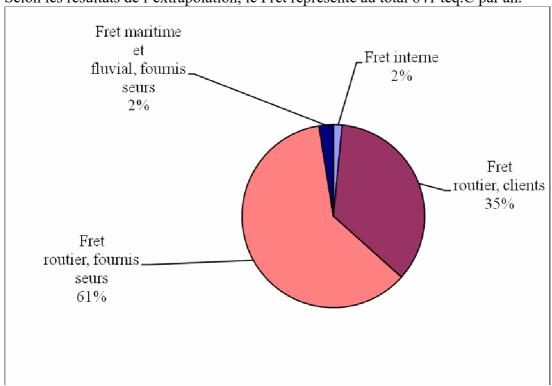



Figure 4 : Émissions de l'intégralité du poste Fret en éq CO₂

RECAPITULATIF PAR POSTE, EQU CARBONE

	Emissions		
FRET Eq Carbone	kg équ. carbone	t équ. C	
Fret interne	9 971	10	
Fret routier, clients	225 150	225	
Fret aérien, clients	0	0	
Fret ferroviaire, clients	0	0	
Fret maritime et fluvial, clients	0	0	
Fret routier, fournisseurs	390 112	390	
Fret aérien fournisseurs	0	0	
Fret ferroviaire, fournisseurs	0	0	
Fret maritime et fluvial, fournisseurs	16 252	16	
TOTAL	641 485	641	

incertitude			Réductions visées, kg	
kg équ. carbone	%		court terme	long terme
499	5%		0	0
21 109	9%		11 258	22 515
0			0	0
0			0	0
0			0	0
41 280	11%		0	0
0			0	0
0			0	0
3 250	20%		0	0
66 137	10%	total	11 258	22 515
		% du poste	2%	4%

RECAPITULATIF PAR POSTE, EQU CO2

	émissions		
FRET Eq CO2	kg équ. CO2	t équ. CO2	
Fret interne	36 559	37	
Fret routier, clients	825 551	826	
Fret aérien, clients	0	0	
Fret ferroviaire, clients	0	0	
Fret maritime et fluvial, clients	0	0	
Fret routier, fournisseurs	1 430 411	1 430	
Fret aérien fournisseurs	0	0	
Fret ferroviaire, fournisseurs	0	0	
Fret maritime et fluvial, fournisseurs	59 592	60	
TOTAL	2 352 113	2 352	

incertitude				
kg équ. CO2	%			
1 828	5%			
77 398	9%			
0				
0				
0				
151 358	11%			
0				
0				
11 918	20%			
242 503	10%			

Réd° visées, kg équ CO2					
court terme	long terme				
0	0				
5 157	10 314				
0	0				
0	0				
0	0				
0	0				
0	0				
0	0				
0	0				
5 157	10 314				

RECAPITULATIF PAR SOUS-POSTE POUR AFFECTATION PAR PERIMETRE

							ictions
	émissions			incertitude		visée	s, kg C
	kg équ.	t équ.		kg équ.		court	long
FRET Equ. Carbone	carbone	carbone		carbone	%	terme	terme
fret interne, véhicules possédés ou opérés,							
combustion seule	8 640	9		432	5%	0	0
Fret interne, émissions amont du combustible	1 331	1		67	5%	0	0
Fret routier client, véhicules possédés ou opérés,							
combustion seule	25 408	25		1 270	5%	1 270	2 541
Fret routier client, véhicules non possédé,							
combustion seule	165 550	166		16 555	10%	8 278	16 555
Fret routier client, émissions amont du carburant	20 452	20		1 909	9%	1 023	2 045
Fret routier client, amortissement des véhicules	13 741	14		1 374	10%	687	1 374
Fret routier fournisseur, véhicules non possédé,							
combustion seule	324 301	324		34 301	11%	0	0
Fret routier fournisseur, émissions amont du							
carburant	34 733	35		3 674	11%	0	0
Fret routier fournisseur, amortissement des							
véhicules	31 078	31		3 305	11%	0	0
Fret maritime et fluvial fournisseur, bateaux non							
possédés, combustion seule	14 288	14		2 858	20%	0	0
Fret maritime et fluvial fournisseur, émissions							
amont du combustible	1 964	2		393	20%	0	0
TOTAL	641 485	641		66 137	10%	11 258	22 515
			, L			2%	4%

	émissions		incertitu			Réd° visée CC	, ,	
FRET, équ. CO2	kg équ. CO2	t équ. CO2		kg équ. CO2	%		court terme	long terme
fret interne, véhicules possédés ou opérés, combustion seule	31 679	32		1 584	5%		0	0
Fret interne, émissions amont du combustible	4 880	5		244	5%		0	0
Fret routier client, véhicules possédés ou opérés, combustion seule	93 161	93		4 658	5%		4 658	9 316
Fret routier client, véhicules non possédé, combustion seule	607 017	607		60 702	10%		30 351	60 702
Fret routier client, émissions amont du carburant	74 990	75		7 000	9%		3 749	7 499
Fret routier client, amortissement des véhicules	50 383	50		5 038	10%		2 519	5 038
Fret routier fournisseur, véhicules non possédé, combustion seule	1 189 104	1 189		125 770	11%		0	0
Fret routier fournisseur, émissions amont du carburant	127 355	127		13 470	11%		0	0
Fret routier fournisseur, amortissement des véhicules	113 952	114		12 118	11%		0	0
Fret maritime et fluvial fournisseur, bateaux non possédés, combustion seule	52 390	52		10 478	20%		0	0
Fret maritime et fluvial fournisseur, émissions amont du combustible	7 203	7		1 441	20%		0	0
TOTAL	2 352 113	2 352	tot al	242 503	10%	total	41 278	82 555
						en %	2%	4%

Véhicules de l'entreprise

Pour la manutention interne, l'entreprise utilise 9 engins de manutention sur le site; la consommation annuelle totale de ces engins est de :

Fret interne					
Engins de manutention GAZOLE	Poids (t)	Consommation (L)			
- 1 élévateur frontal semi industriel MANITOU (Pascal)	7t				
- 1 élévateur frontal semi industriel MANITOU (Patrick)	7t	5000 litres à 0.716€/l			
- 1 élévateur FENWICK	1,5t	3000 litres a 0./10e/1			
- 1 nacelle HAULOTTE	12 t				

Fret interne					
Engins de manutention GPL	Poids (t)	Consommation			
- 1 élévateur AMLIFT (Claude) GPL	6t 200	480 bouteilles de 13 kg			
- 1 élévateur AMLIFT (Pierre-Yves) GPL	6t 200	de GPL			

Fret interne					
Engins de manutention ELECTRIQUE	Poids (t)	Consommation			
- 1 gerbeur électrique AMLIFT (chargement)	2t 980				
- 1 gerbeur électrique AMLIFT (Sapisol)	2t 980	Batteries rechargeables			
- 1 transpalette électrique Komatsu	0,5t				

En outre l'entreprise dispose également de 9 camions utilisés pour divers transports de marchandises sur site et à destination de clients.

Véhicules	Poids à vide (t)	Distance (Km)/2009
1 tracteur Mercedes 6 roues motrices	14t 350	963
1 tracteur Renault Premium	6t 960	79 596
1 tracteur Volvo avec grue Palfinger	10t 700	35 601
1 fourgon PEUGEOT J5 Plateau	1t 720	2 038
1 fourgon PEUGEOT Boxer	1t 780	7 361
1 fourgon FIAT Ducato	2t000	1 900
1 fourgon Renault Kangoo	1t 065	8 992
1 Citroën C8	1t 668	23 208
1 nacelle NISSAN hauteur 20m	3t 300	1 047

Consommation totale des véhicules en gazole : environ 35 000 litres sur 2009 à 0.98€/1.

Livraisons de produits finis aux clients.

Transports principaux	CP et Ville
VIVOT Transport	25390 Orchamps Vennes
VECATEL	25700 Valentigney
STJP JEANTET	25300 Les Granges Narboz

Transports fréquents	CP et Ville
GUILLAUME	25210 Le Russey
PUGIN	25520 Ouhans

Transports occasionnels	CP et Ville
LKW WALTER	2355 Wiener Neudorf (Aut)

6 entreprises de transport (hors transport SIMONIN). Les informations trouvées pour ce poste sont les montants facturés par les 6 entreprises : 762 288 € sur la base de 1,215 €/km. Les 6 utilisent un PTAC de 15 à 25 tonnes. (95% des camions utilisés sont des semi remorques de 15 t + 25 t de charges, il n'y a que 5% de camions porteurs de 19 t).

> Nous utilisons également des commissionnaires : DHL + TPI + SDV

Quantité de bois

La quantité de bois utilisée est déterminée en fonction des quantités livrées soit 9 636 tonnes desquelles on déduit les déchets de menuiserie soit 2400 tonnes (200 tonnes par mois). Toutefois, il faut encore distinguer le bois issu de forêts durablement gérées et celui que l'on doit considérer comme du bois de déforestation.

Matériaux entrants (bois)			
Matériaux	Autres usages (en t)		
Bois d'œuvre (forêts gérées)		9 636	
Bois d'œuvre (déforestation)	0	0	
Total		9 636	

Transport du bois par cargo

Le bois d'œuvre importé est livré par bateau en provenance des différents pays repris cidessous. Pour déterminer les données d'entrée nécessaires pour la saisie à partir des informations fournies il faut estimer les t.km correspondantes à ce transport donc les distances maritimes parcourues. Elles sont calculées à partir d'un logiciel spécifique disponible sur le site : www.dataloy.com. Les distances maritimes données en miles nautiques sont ensuite converties en kilomètres (1 mile nautique 1853,18 m). La détermination des t.km, suit.

En faisant une hypothèse sur la capacité des navires (cargo) utilisés, nous établissons le tableau suivant.

Origine		Masse transportée (en tonne)	Distance (km)	t.km
Caractéristique du bateau	Cargo polyvalent 17 nœuds	8 237	344 672	8 750 321
Routier	Semi-remorque ou tracteur routier	8 237	355 032	8 472 187
Total				

Les bois utilisés par l'entreprise SIMONIN sont issus de forêt gérée durablement. 6745,2 tonnes ont ainsi été replantées en 2009.

FOURNISSEURS DE BOIS de la société SIMONIN

Tous les bois que nous utilisons sont issus de forêts gérées et exploitées durablement.

Scieries en Finlande (fournisseurs d'épicéa – densité 500 kg/m3):

Le transport s'organise de la manière suivante depuis la Finlande :

- chargement du bois à la scierie, transport par route jusqu'à Helsinki
- chargement de la remorque sur bateau (sans le tracteur) soit 558 miles, 1033 km
- déchargement au port de Rostock (Allemagne)
- reprise du transport par route jusqu'à Montlebon (25) soit 1101 km

Nom de la scierie	Agent	CP et Ville	Camions / 2009	Poids total/an
Pihlava Sawmill ltd	Agibois	28800 Pori	59 de 51 m ³	1 504 t
Hasa	Konow et Smith		57	1 453 t
Kuhmo Oy	Konow et Smith	Kuhmo	24	612 t
Iisveden Metsä Oy	Konow et Smith	77800 Iisvesi	15	383 t
Keitele Timber Oy	Sapinus	72600 Keitele	4	102 t
Herralan Saha Oy	Sapinus	16500 Herrala	22	561 t
Multian Saha Oy	Sapinus	42600 Multia	4	102 t
Kinnaskoski Oy	Sapinus	35700 Vilppula	11	281 t
FM Timber Team	Sapinus	44800 Pihtipudas	11	281 t
Isojoen Saha Oy	Sapinus	64900 Isojoki	19	485 t
Vapo Timber Oy	Sapinus	81700 Lieksa	2	51 t
Tiaisen Saha Oy	Sapinus	54770 Heituinlahti	9	230 t
Kampin Saha	Bois du Nord		8	205 t
Finnforest	Finnforest		24	612 t

Origine	Finlande
Quantité (t) totale	6862
Distances cargo (km)	1033
Distance routier (km)	1101

Scieries en Suède et Norvège (épicéa – densité 500 kg/m3) :

Le transport s'organise de la manière suivante depuis la Suède:

- chargement du bois à la scierie, transport par route jusqu'à Goteborg
- chargement de la remorque sur bateau (sans le tracteur)
- déchargement au port de Rotterdam (Pays Bas) ou Anvers (Belgique) soit 467 miles
- reprise du transport par route jusqu'à Montlebon (25) soit 667 km en moyenne

Le transport s'organise de la manière suivante depuis la Norvège:

- chargement du bois à la scierie, transport par route jusqu'à Tromsø
- chargement de la remorque sur bateau (sans le tracteur)
- déchargement au port de Rotterdam (Pays Bas) ou Anvers (Belgique) soit 1196 miles
- reprise du transport par route jusqu'à Montlebon (25) soit 667 km en moyenne

Nom de la scierie	Agent	CP et Ville	Camions / 2009	Poids total/an
NWP	Agibois	SE-831 23 Östersund (Suède)	31 de 50 m3	775 t
Bergs Timber	Bitus	38294 Nybro (Suède)	10	250 t
Moelven	Agibois	2435 Braskereidfoss (Norvège)	14	350 t

Origine	Suède	Norvège
Quantité (t) totale	1 025	350
Distances cargo (km)	865	2 215
Distance routier (km)	667	667

Transport du bois par route uniquement

Scieries en Autriche (mélèze – densité 600 kg/m3):

Le transport s'organise de la manière suivante depuis l'Autriche:

- chargement du bois à la scierie, transport par route jusqu'à Montlebon soit 649 km

Nom de la scierie	Agent	CP et Ville	Camions / 2009	Poids total/an
Gragabber	Bois du Nord		11 de 40 m3	264 t
LSB	Bois du Nord		16	384 t
Ortner	Ortner	9782 Nikolsdorf 91	6	144 t
Kaml et Huber	Vittoz		1	24 t

Origine	Autriche
Quantité (t) totale	1375
Distance routier (km)	22 066

Scierie en Suisse (mélèze – densité 600 kg/m3):

Le transport s'organise de la manière suivante depuis la Suisse:

- chargement du bois à la scierie, transport par route jusqu'à Montlebon soit 112 km

Nom de la scierie	CP et Ville	Camions/2009	Poids total/an
Scierie Despond	1630 Bulle	1	24 t

Origine	Suisse
Quantité (t) totale	24
Distances (km)	112

Transport des autres matériaux (hors bois)

Les matériaux (hors bois) sont acheminés dans l'entreprise par route. Les informations recueillies auprès de services de l'entreprise sont fournies sous la forme suivante :

Matériaux	Nbre de livraisons	Quantité totale (t)	kms
Polystyrène expansé 30 Kg/m ³	225	$16\ 500\ \mathrm{m}^3 = 495\ \mathrm{t}$	337500
Polystyrène graphité 30 Kg/m ³	223	10 300 III — 493 I	33/300
Liège 110 Kg/m ³	5	$300 \text{ m}^3 = 33 \text{ t}$	2500
Colle et durcisseur	11 140 t		4400
Peintures et primaires	24 80 t		4800
Lasures	6	12 t	750
Antitermites	6	6 t	50400
Laines de roche Rock 70 Kg/m ³	3	$3 800 \text{ m}^2 = 56 \text{ t}$	
Fibres de bois Steico 270 Kg/m ³	10	$30\ 000\ m^2 = 660\ m^3$ $= 178t\ 200$	5000
MDF hydrofuge 750 Kg/m3	9	13 000 m2 = 647 m3 = 485t 250	2700
Emballages	2	12 t	700
Imprimeur plaquettes 1	20	3t 145	13200
Imprimeur plaquettes 2	5	0t 416	6600
Papeterie fournisseur 1	90	1t 800	259200
Papeterie fournisseur 2	12	0t 100	4680
Papeterie fournisseur 3	6	0t 050	150
TOTAL		1 502t 961	

	Données isolants		
	Conductivité thermique l en W/ m.C°	Masse volumique en kg/m³	Dette environnementale en kg éq.C/t
Polystyrène expansé	0,038	12,5	935,0
Polyuréthanne	0,023	51,6	849,4
Laine de verre	0,04	10,1	359,5
Verre cellulaire	0,042	120,0	191,4
Laine de roche	0,035	50,0	634,6
Cellulose	0,038	25,0	32,4

Extrait de : « Ludivine LEFEBVRE, Master Valorisation de la Matière Minérale, Université des sciences et technologies de Lille UFR de Chimie »

L'ANTI-THERMITE / Composition et caractéristiques techniques

Perméthrine : 0.44%, Propiconazole : 1.11%, Fenpropimorphe : 2.24%, Acide Borique : 3.70%. Ne modifie pas la couleur du Bois. Liquide limpide Jaune pâle. Densité du concentré 1 à 20°C. pH 7.2 à 2% dans l'eau.

La détermination des t.km correspondantes à ces livraisons a été effectuée avec l'utilitaire «Fret_route_tkm.xls».

Les émissions liées aux livraisons des fournisseurs représentent 60 % des émissions totales du poste transport.

Préconisations:

- 1) étudier la possibilité de faire des groupements de commande, rationaliser les achats.
- 2) analyser la position géographique des principaux fournisseurs.
- 3) étudier la possibilité de mettre en place des cycles courts avec les fournisseurs locaux.
- 4) analyser la consommation des matières premières dans le but de calculer les stocks et volumes de commande optimum en fonction de la localisation des fournisseurs.
- 5) Innovation : Utilisation du système Résix® sur le dernier gros chantier de 345 m³, la société Simonin a affrété spécialement un cargo pour le transport de l'intégralité de la structure = absence de perte de place et optimisation du temps de déchargement, de logistique.

Ce système est maintenant présent dans quasiment la totalité des structures et chantiers de l'entreprise.

L'ensemble de la structure de 345 m³ a été transporté par cargo depuis le port d'Anvers en optimisant l'espace disponible des containers. Le système Résix® a permis de réduire

l'espace nécessaire à transporter un même volume de bois par rapport aux méthodes d'assemblages courantes.

Description du système Résix®:

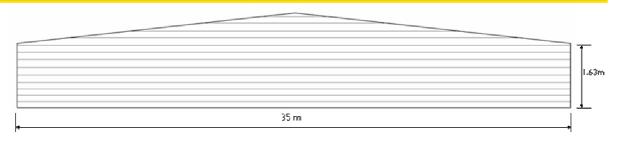
Le système Résix ou de « soudure du bois » permet trois types d'assemblage :

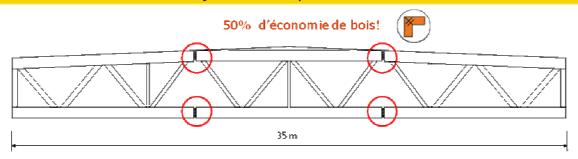
- Bois métal (visible ou non visible) qui permet de constituer des joints de transport
- Bois Bois
- Tridimensionnel

Avantages:

- Une élégance des assemblages (pas de boulons apparents et ferrures discrètes)
- Assemblage des éléments métalliques dès la conception (diminution du transport de la quincaillerie et mécanique : 5 à 10%, gain de temps lors de l'assemblage sur le chantier)
- Résistance mécanique accrue donc moins de perte de matière, moins de défauts et meilleure résistance que les assemblages traditionnels.
- Economie de matière en optimisant les sections de bois = réduction du volume de bois (moyenne en réduction de bois 25 %) et du transport des structures (environ de 25 % *in fine*, pour les besoins de modélisation des réductions nous nous contenterons de 10 % à long terme, cette évaluation sera affinée par retour d'expérience).
- Grande liberté architecturale : conception de structures plus fluides et légères différentes des poutres pleines lamellées collées.
- Durabilité des assemblages confirmée par les études menées sur le vieillissement des résines, des essais au feu, des essais sismiques... (voir justification en annexe).

En conclusion,


La quantité de bois nécessaire à la fabrication des structures sera réduite de façon considérable en parallèle au transport fournisseur – Simonin et Simonin – client.


Résix®: économie de matière : solution écologique

Solution Résix® avec joints de transport: 98 m3

Simonin Wood Solutions

www.simonin.com

III. Les données d'exploitation à l'état brut

III.I. Energie et chauffage

Les consommations d'électricité de l'entreprise obtenues à partir des factures EDF/GDF sont données dans le tableau ci-dessous.

Le chauffage des locaux est assuré par une chaudière à copeaux de bois (résidus du process) soit 200 tonnes/mois ainsi qu'une chaudière à mazout (sécurité)

- 1 chaudière bois de 3 100 KW
- 1 chaudière mazout de 300 000 cal/h

	Consommation d'électricité	É
Année 2009		2 105 279 kWh

Consommation de copeaux (chaudière à bois)					
Année 2009	200 t / mois				

Les surplus de copeaux bois produits sont récupérés par une entreprise de recyclage.

Emissions liées à l'utilisation de l'énergie, en t équ. Carbone

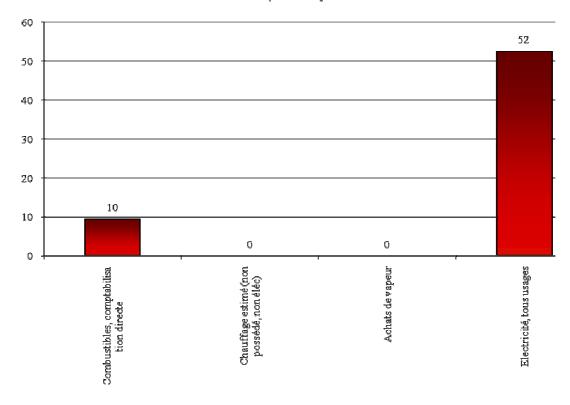


Figure 5 : Emissions liées à l'utilisation de l'énergie en éq C

Emissions liées à l'utilisation de l'énergie, en t équ. CO2

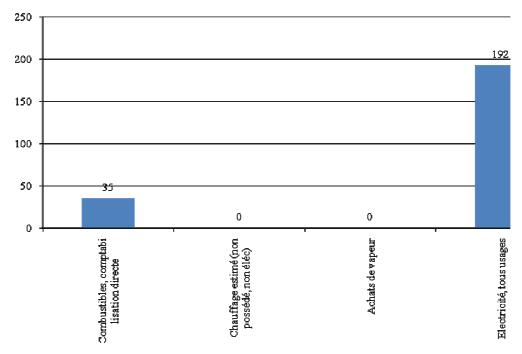


Figure 6 : Emissions liées à l'utilisation de l'énergie en éq CO2

Selon les résultats de l'extrapolation, l'utilisation de l'énergie interne représente au total 61,9 teq.C par an.

- 52,4 teq.C proviennent de l'électricité (soit 85 % des émissions)
- 9,5 teq.C proviennent de la combustion des résidus de fabrication (soit 15 % des émissions)

La chaudière au bois utilise les résidus de process, nous ne prenons en compte que l'énergie « amont » soit l'énergie nécessaire au débardage du bois.

III.II. Préconisations

- 1) sensibiliser aux économies d'énergie, cela peut se faire par exemple grâce à une campagne d'affichage.
- 2) veiller au bon fonctionnement et à l'entretien des brûleurs de la chaudière.
- 3) Transformation et évolution vers une unité de cogénération de la chaudière bois afin de permettre la production d'électricité à partir des copeaux de bois.

IV. Emissions non énergétiques

L'entreprise ne comprend pas d'équipement de climatisation.

V. Matériaux et services entrants

Contribution des matériaux entrants, en tonnes équ. carbone

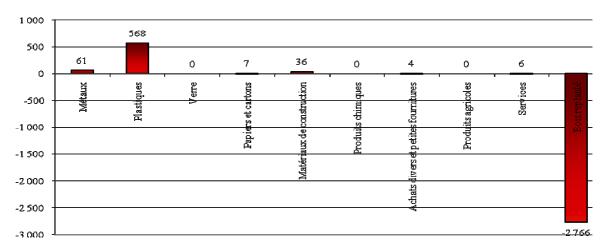


Figure 7 : Emissions liées aux matériaux et services entrants

$Contribution \ des \ matériaux \ entrants, \ en \ tonnes \ \acute{e}qu. \ CO2$

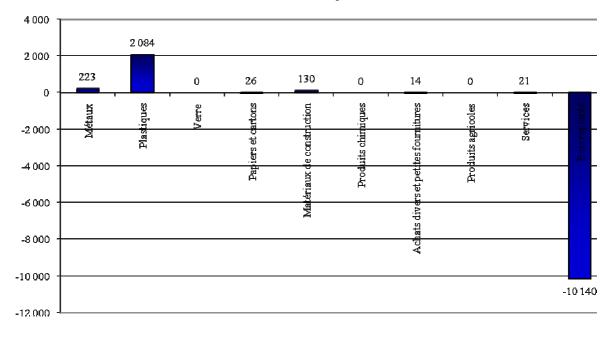


Figure 8 : Répartition par nature de matériau, hors bois

RECAPITULATIF PAR POSTE, EQU CARBONE

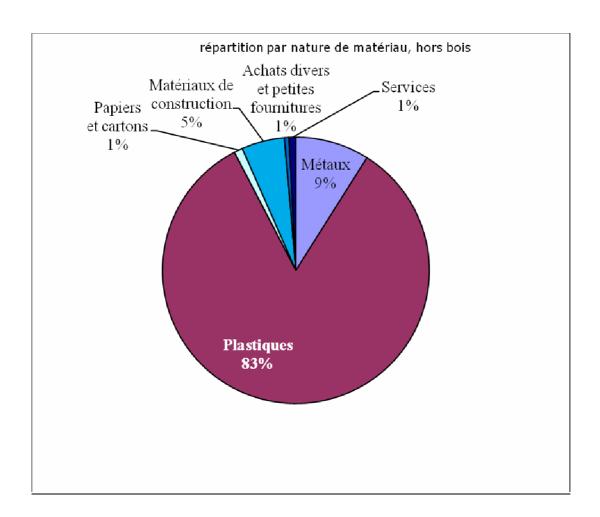
	Emissions	Suc	incertitude	
MATERIAUX ENTRANTS, Equ. carbone	kg équ. carbone	t équ. carbone	kg équ. carbone	0 .
Métaux	006 09	61	060 9	
Plastiques	568 350	568	113 670	- ,
Verre	0	0	0	
Papiers et cartons	7 073	7	1 415	- ,
Matériaux de construction	35 538	36	0	
Produits chimiques	0	0	0	
Achats divers et petites fournitures	3 700	4	1 850	
Produits agricoles	0	0	0	
Services	5 684	9	2 842	
Bois replanté	-2 765 500	-2 766	553 100	. 1,
TOTAL	-2 084 256	-2 084	996 829	Α,

risées, kg C	long terme	0	0	0	0	0	0	0	0	0	0	0
Réductions visées, kg C	court terme	0	0	0	0	0	0	0	0	0	0	0
												total
	%	10%	20%		20%	0%		50%		50%	-20%	-33% total
incertitude	kg équ. carbone	060 9	113 670	0	1 415	0	0	1 850	0	2 842	553 100	998 829

RECAPITULATIF PAR POSTE, EQU CO2

	émissions	su	incertitude		
MATERIAUX ENTRANTS Eq CO2	kg équ. CO2	t équ. CO2	kg équ. CO2	%	
Métaux	223 300	223	22 330	10%	
Plastiques	2 083 950	2 084	416 790	20%	
Verre	0	0	0		
Papiers et cartons	25 933	26	5 187	20%	
Matériaux de construction	130 305	130	0	%0	
Produits chimiques	0	0	0		
Achats divers et petites fournitures	13 567	14	6 783	20%	
Produits agricoles	0	0	0		
Services	20 840	21	10 420	20%	
Bois replanté	-10 140 167	-10 140	2 028 033	-20%	
TOTAL	-7 642 273	-7 642	2 489 543	-33%	

6)	rme	0	0	0	0	0	0	0	0	0	0
kg équ CO2	long terme										
Réd° visées, kg équ CO2	court terme	0	0	0	0	0	0	0	0		0
	%	10%	20%		20%	%0		20%			50%
incertitude	qu. CO2	22 330	416 790	0	5 187	0	0	6 783	0		10 420


Achats de matériaux (hors bois)

En fonction de l'activité de production de l'usine et du nombre d'unités produites, une estimation des tonnages a permis de compléter les renseignements fournis par l'entreprise.

Matériaux (hors bois)									
Matériaux	Quantités totales (t)	dont emballages							
Acier neuf	70								
Cartons	0	12							
Total									

Les fournisseurs d'acier (Français) et la consommation sur 2009 :

- 1) Fournisseur de <u>ferrailles et acier brut</u> : Ent. Burdin Bosser (25000 BESANCON) = **20 tonnes**
- 2) Fournisseur de <u>ferrures</u>: Ent. ONILLON et Fils (49510 JALLAIS) = **27 tonnes**
- 3) Fournisseur de <u>ferrures</u>: Ent. LASER EVOLUTION (70400 HERICOURT) = **18,1 tonnes**
- 4) Fournisseur de <u>ferrures</u>: Ent. MIRO (25510 PIERREFONTAINE) = **4,9 tonnes**

Achat de bois

Tous les bois transformés par l'entreprise Simonin sont labélisés PEFC (cf Annexe). La société SIMONIN étudie actuellement la possibilité d'obtenir le label PEFC pour ces propres produits. Les principes de la labellisation PEFC sont les suivant :

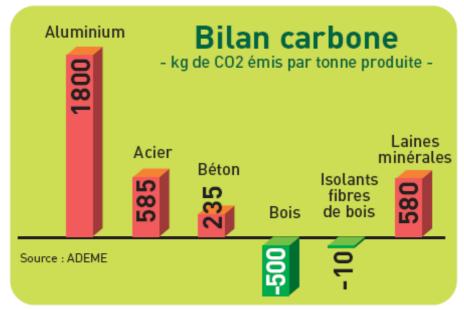
<u>Un processus de concertation</u> entre les principaux acteurs économiques et sociaux de la filière forêt-bois française et un certain nombre d'associations de citoyens et usagers de la forêt.

<u>Une référence : la définition de la gestion durable et les critères d'Helsink</u>i, ainsi que les recommandations de Lisbonne qui les accompagnent ("recommandations pan-européennes pour la gestion forestière durable au niveau opérationnel").

<u>Une amélioration continue</u> de la gestion des forêts : toutes les parties prenantes inscrivent leur action dans cette perspective.

Une démarche volontaire.

<u>Une prise en compte de la structure de la propriété forestière</u>. Le système permet aux forestiers qui le souhaitent de s'engager dans une démarche de certification de la gestion durable.


Un mécanisme de certification à niveau régional.

Un processus de certification qui implique :

- le respect d'un cahier des charges technique appelé référentiel
- l'intervention d'organismes certificateurs indépendants et accrédités par le COFRAC
- le recours à des normes internationalement reconnues : ISO 9000 de management de la qualité et ISO 14000 de management environnemental.

Des écolabels, comme le PEFC (Programme de Reconnaissance des Certifications Forestières) et le FSC (Forest Stewardship Council), permettent d'assurer au consommateur que le bois qu'il achète provient de forêts gérées de façon durable : prise en compte de la richesse biologique locale, mise en place d'un plan d'exploitation raisonné et durable, respect et non-spoliation des populations indigènes, respect du code du travail et du commerce du pays d'exploitation, etc.

Préconisations:

La rationalisation des achats permettra une gestion optimale des matériaux entrants ainsi que de leur utilisation (quincaillerie principalement) :

- La mise en place d'un catalogue restreint
- L'intégration de flux de passation de commande
- La mise en place de différents niveaux de validation de la commande
- Accroitre la performance administrative de la gestion client et fournisseur

Le système Résix® = Economie de matière en optimisant les sections de bois = réduction du volume de bois (moyenne 25 %) et du transport des structures (moyenne 10 % dans un premier temps).

VI. Services

Données brutes

L'ensemble des données récupérées auprès de l'entreprise concerne les dépenses engagées pour les postes suivants :

	les abonnements	iournaux =	200€
•	ics addifficitions	Journaux	200 C

	1	· ·	•	\sim ·	•
•	l'entretien du terrair	ı = entrei	orise	Simo	nın

les locations diverses

- Location copieur Canon IRC 4	3 600,00 €
- Location copieur Canon IRC 3	1 702,95 €
- Location Traceur Canon IPF 81	878,33 €
- Location Néopost machine à affranchir	726,21 €
- Location Locam	3 218,96 €
- Location Conteneurs	16 713,32 €
- Location signalétique	372,47 €

- les frais publicitaires (cotisations publicitaires, frais de publicité, publicités diverses, participations, rédactionnels) = 16 681 €
- les frais d'entretien du matériel = entreprise Simonin
- les frais d'assurances (primes d'assurance, assurances crédit client) =

21 082,38 €
31 013,36 €
4 412,01 €
116 064,86 €
32 116,47 €
6 237,69 €
3 737,08 €
101 220,26 €
3 397,42 €
42 312,34 €
3 287,00 €

• les frais de télécommunication (téléphone, fax, Internet, affranchissement) =

- Coriolis télécommunication	24 369,89 €
- Orange	24 328,49 €
- 1 and 1 (Internet)	635,39 €
- Neyrial (Informatique)	19 791 €
- RFI (Internet)	299 €
- La Poste (affranchissement)	18 766,47 €
- Chronopost (envoi de courrier)	850,18 €
- DHL (envoi de courrier)	1183,31 €
- UPS (envoi de courrier)	146,25 €

- les frais de formation = colloques séminaires 14 211,39 €
- les honoraires juridiques = comptable, honoraires du commissaire aux comptes
 - Honoraires Cabinet Lintz 27 500,00 €

- Honoraires Vérif Elect	2 080,00 €
- Honoraires autres	16 838,92 €
- Honoraires Intracomm	5 270,00 €
- Honoraires commis aux	12 900,00 €
- Frais actes et content	2 672,80 €

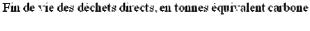
les frais bancaires, frais de services bancaires, frais sur les impayés, frais de dossiers sur les emprunts, frais sur les crédits bail, frais sur les titres, frais sur effets).

- Services bancaires associés	10 907,46 €
- Commis. Frais /Emis. Em	140,00 €
- Frais/Cautions	3 301,57 €
- Autres Frais Certif. N	65,00 €
- Cotisations	3 198,90 €

Le montant total des dépenses est de 189,5 k€.

Préconisations

- configurer toutes les imprimantes en recto verso.
- fabrication de blocs de papier brouillon à partir des papiers déjà imprimés sur une face.
- formation (personnel et bureau d'étude) à la modification informatique des documents (fonction modification, suivi des modifications, commentaires sur les logiciels de traitement de texte...).
- création d'une procédure permettant de déterminer le nombre d'exemplaire à faire imprimer.
- imprimer 2/3 ou 1/3 des documents en deux pages par feuille. En imaginant que cela soit possible pour le tiers des impressions.
- discuter avec les fournisseurs actuels et l'entreprise chargée de l'entretien des imprimantes sur la possibilité d'utiliser du papier recyclé et /ou non blanchi.


VII. Déchets directs

La fabrication n'engendre pas de déchets puisque les résidus de process sont valorisés sur place et que l'entreprise bénéficie d'un contrat pour la récupération des déchets issus de l'utilisation des vernis et peintures incluant le coût de l'enlèvement et le traitement dans le prix d'achat.

Les **déchets de polystyrène** sont ré-exploités par les fournisseurs pour en faire des emballages ou calles, certains déchets de bois sont également vendus.

Voici l'estimation des déchets sur l'année 2009:

- 1) Copeaux et déchets de bois pour notre chaudière = 200 tonnes / mois = 2400 tonnes réutilisés sur le site pour la production d'énergie.
- 2) Autres copeaux et déchets de bois vendus = 118 camions x 12 tonnes = **1 416 tonnes** (Les copeaux vendus sont retraités par une entreprise Suisse)
- 3) Déchets Industriels (DIB > tout ce qui est non réutilisable et non recyclable) = **100 tonnes**
- 4) Aciers et ferrailles = 3 bennes x = 2.5 t = 7.5 tonnes

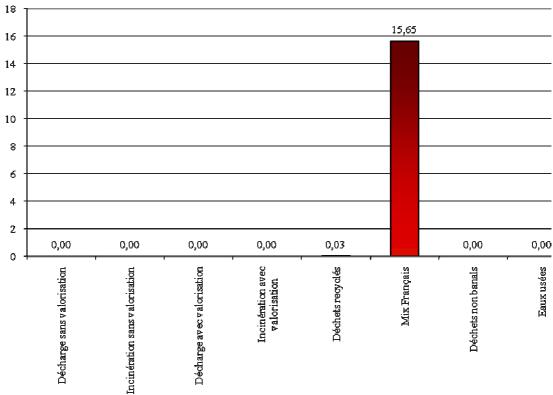


Figure 9 : Émissions de l'intégralité du poste déchets directs en éq C

Les déchets sont constitués de plastique (100 tonnes) dont la valorisation a été considérée comme 100 % mixte français. Seuls les métaux sont recyclés (7,5 tonnes).

Fin de vie des déchets directs, en tonnes équivalent CO2

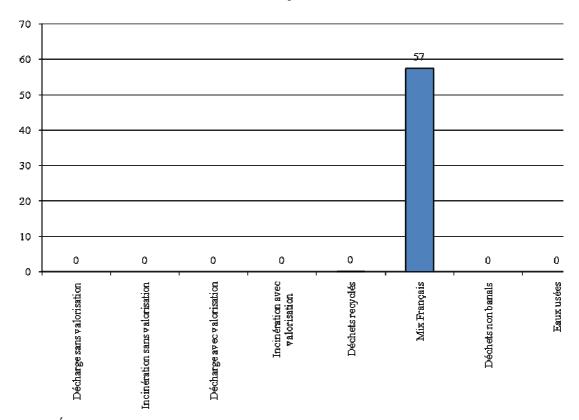


Figure 10 : Émissions de l'intégralité du poste déchets directs en éq CO₂

VIII. Emballages

Total fabrication et fin de vie des emballages (kg équ. carbone)

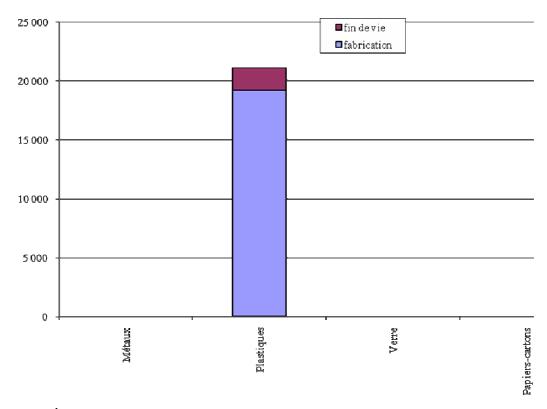


Figure 11 : Émissions de l'intégralité du poste emballages en kg éq C

	kg équ. Carbone		
TOTAL FABRICATION + FIN DE VIE, équ. C	fabrication fin de vie total		
Métaux	0	0	0
Plastiques	19 200	1 878	21 078
Verre	0	0	0
Papiers-cartons	0	0	0
TOTAL	19 200	1 878	21 078

Réductions le	Réductions long terme visées, kg équ. Carbone			
fabrication fin de vie total				
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		

Les principaux emballages sont de type Bâche et film plastique pour le bardage, les panneaux isolants et les poutres lamellées collées. Les emballages sont recyclés par une entreprise agréée.

IX. Immobilisations

Les informations fournies concernant l'inventaire des bâtiments, machines et équipements informatiques permettent la saisie des informations dans le l'onglet « Amortissement ». Cet onglet permet de répartir sur plusieurs années les émissions liées à l'acquisition par l'entreprise de bâtiments, véhicules, machines-outils, etc.

INFORMATIQUE

1° - Secrétariat :

2 PENTIUM IV + 2 postes CORE 2 + 1 Pentium Dual Core sur réseau général NT SERVER fonctionnant avec office 2003 sous Windows. Imprimantes LASER en périphériques.

2° - Comptabilité:

1 poste PENTIUM IV fonctionnant avec logiciel CCMX + Start RH sous Windows - Imprimante LASER.

3° - Bureau commercial:

2 postes PENTIUM IV + 8 postes CORE 2 sur réseau général NT SERVER fonctionnant avec Office 2003, CADWORK et ACORDBAT sous Windows - Imprimantes jet d'encre couleur, LASER et Traceur-Copieur-Scanner AO en périphériques.

4° - Bureau technique:

5 postes PENTIUM IV + 9 postes CORE 2 sur réseau général NT SERVER fonctionnant avec CADWORK 3D, SEMA (convertisseur de données dessin en données machine) et Office 2003 sous Windows NT - Imprimantes jet d'encre couleur A3 et A4 + Traceur-Copieur-Scanner AO en périphériques.

Liaisons BE aux commandes numériques par le serveur avec une fibre optique.

5° - Bureau de coordination :

4 postes PENTIUM IV + 2 postes CORE 2 sur réseau général NT SERVER fonctionnant avec Office 2003 sous

Windows - Imprimante jet d'encre couleur en périphérique.

6° - Atelier:

2 postes PENTIUM IV sur réseau général NT SERVER fonctionnant avec Office 2003 sous Windows - Imprimante jet d'encre couleur en périphérique.

MACHINES et OUTILLAGE

1° - 3 <u>Séchoirs à bois</u> - Capacité 170 m3/semaine

2° - Chaufferie:

- 1 chaudière bois de 3 100 KW
- 1 chaudière mazout de 300 000 cal/h

3°- Atelier de conditionnement de bois chauffé 2250 m²:

- 3 aspirations de copeaux
- 1 déligneuse
- 1 ruban dédoubleur

- 1 raboteuse 4 faces
- 1 pont roulant 3 T
- 1 pont roulant de 4 T
- 1 tenonneuse double
- 1 perceuse multi broches
- 1 chaîne d'aboutage S.M.B.
- 1 profileuse 4 faces
- 2 compresseurs
- 1 bouchonneuse
- 1 brosseuse QUIKWOOD
- 8 tables élévatrices.

4°- Atelier de traitement et peinture chauffé 2 700 m²:

- 1 cellule de traitement autoclave
- 1 brosseuse
- 3 tunnels de traitement des bois
- 2 cabines application de peinture acrylique CEFLA
- 1 marqueur de traçabilité
- 7 tables élévatrices
- 2 fours de séchage
- 1 chaine d'aboutage DIMTER
- 3 aspirations de poussières
- 1 empileuse
- 1 emballeuse
- 1 machine à faire les peintures
- 1 cabine à peinture manuelle.

5°- Atelier de collage et fabrication de 3 580 m² chauffé :

- 1 chaîne d'aboutage DIMTER
- 1 manipulateur JOULIN
- 1 raboteuse 4 faces REX
- 2 encolleuses mélangeuses doseuses AKZO 2 composants
- 1 scie de poutre STROMAB
- gabarits de serrage
- serrage hydraulique
- serrage par vis
- 2 presses haute fréquence
- 3 ponts roulants
- 1 raboteuse Kupfermuhle de 2 m
- 1 scie radiale
- 3 aspirations de copeaux
- 1 broyeur à déchets
- machines portatives

6° - Atelier de taillage de 2180 m² :

- 2 ponts roulants
- 1 centre d'usinage à commande numérique 5 axes B.Z.H
- 1 broyeur
- 1 scie radiale
- 1 scie à ruban

- 1 scie à panneaux verticaux
- machines portatives
- 1 emballeuse
- 1 table de pré-fabrication façades et son environnement.

7° - Atelier de taillage de 1920 m²:

- 1 moulurière T.S.N.
- 1 centre de taillage SCHMIDLER
- 1 chaîne de taillage à commande numérique HUNDEGGER
- 2 ponts roulants
- 1 machine de finition pour SAPISOL CEFLA
- 2 ponceuses KUNDIG
- 1 broyeur
- 6 tables élévatrices.

8° - Atelier de serrurerie complet :

- 1 cisaille poinçonneuse
- 2 postes à souder au fil avec table automatique et aspiration
- 1 scie à ruban
- 1 tour mécanique
- 1 fraise scie
- 2 perceuses d'établi
- 1 perceuse à colonne
- 1 cabine de peinture avec aspiration
- 1 presse hydraulique 100 T
- 1 fraiseuse.

9° - Atelier de ferblanterie complet :

- 1 cisaille guillotine
- 1 plieuse
- matériel de soudure.

10° - Atelier de menuiserie complet :

- 1 raboteuse
- 1 dégauchisseuse
- 2 toupies
- 1 scie à format
- 1 tenonneuse
- 1 aspiration de copeaux
- 1 mortaiseuse à mèche
- 1 perceuse à colonne
- 1 mortaiseuse à chaîne
- 1 scie circulaire d'établi
- 1 scie à ruban.

11° - Atelier d'entretien pour véhicules :

- 1 machine à démonter et à équilibrer les pneus
- 1 nettoyeur haute pression.

12° - Atelier d'affûtage complet:

- 1 affûteuse pour fers de raboteuse
- 2 affûteuses molettes toupies et 4 faces
- 1 affûteuse scies circulaires
- 1 affûteuse pour profilage de fers pour moulures spéciales
- 1 affûteuse de mèches
- 1 bac de nettoyage ultra-sons
- 1 affûteuse de lame de scie à ruban.

13° - Laboratoire d'essais:

- 1 presse d'essais agréée CTBA pour essais de cisaillement et flexion
- 1 sylvatest
- 1 balance de précision
- 1 contrôleur d'humidité
- 1 presse de traction des assemblages.

14° - 4 Silos : 1 x 200 m3 - 2 x 320 m3 et 1 x 630 m3

15° - 2 transformateurs privés de 630 KVA.

16° - Moyens de transport et levage

- 1 tracteur MERCEDES, 6 roues motrices
- 1 tracteur RENAULT
- 1 tracteur VOLVO
- 1 remorque FAYMONVILLE
- 1 remorque BOGGIE pour transports de grandes longueurs (immobilisée)
- 1 remorque surbaissée NOOTEBOOM extensible à 25 ml 3 essieux directeurs
- 1 remorque TRAILOR porte engin surbaissée avec rampe transport de véhicules
- 1 remorque camion RENAULT
- 1 fourgon PEUGEOT J5 plateau
- 1 fourgon PEUGEOT Boxer
- 1 fourgon FIAT Ducato
- 1 RENAULT Kangoo
- 1 Citroën C8.

17° - Moyens de levage:

- 2 caravanes atelier
- 1 nacelle NISSAN élévateur de personnes, à nacelle, hauteur 20 m
- 1 nacelle HAULOTTE 25 m
- 1 nacelle électrique MANITOU hauteur 17 m
- 1 autogrue PPM 18.07, 18 T, flèche 32 m
- 1 grue amovible PALFINGER sur VOLVO
- 1 autogrue TEREX AC 35, 35 T
- 1 grue amovible COPMA sur Mercedes
- équipements complets de protection
- échafaudages.

18° - Moyens de manutention

- 2 élévateurs frontaux semi-industriels de 4 Tonnes MANITOU
- 1 élévateur électrique 2.5 Tonnes sur élévation à 6.50 m TOYOTA

- 1 élévateur électrique 1.6 Tonnes sur élévation à 6.50 m FENWICK
- 2 élévateurs multidirectionnel 4 Tonnes AMLIFT
- 1 gerbeur électrique AMLIFT

POIDS DES MACHINES

Total poids des machines: 84 344 Kg

- 1 abouteuse DIMTER (atelier lamellé collé) = 5 350 Kg
- 1 raboteuse (atelier calibrage) = 7 230 Kg
- 1 raboteuse 4 faces REX (atelier collage) = 14 970 Kg
- 1 raboteuse (atelier lamellé collé) = 8 800 Kg
- 1 raboteuse 4 faces TSN (atelier Sapisol) = 8 200 Kg
- 1 ponceuse Kunding = $2 \times 2300 \text{ Kg}$
- 1 Centre de taillage BZH = 12 130 Kg
- 1 Centre de taillage Hundegger K2 = 5 780 Kg
- 1 Centre de taillage Schmidler = 2 380 Kg
- 1 emballeuse Ameca Expédition = 1 750 Kg
- Cabine de peinture Sapisol + four de séchage = 4 880 Kg
- Presses à haute fréquence = 2 x 3 580 Kg
- Encolleuses = $2 \times 67 \text{ Kg}$
- 1 affûteuse fers de raboteuse = 980 Kg

Les différents équipements immobilisés et les durées d'amortissement sont donnés cidessous :

Amortissements			
	Durée d'amortissement	10 ans	
Bâtiments (Bois)	Bâtiment couverts chauffés, structure bois	20 000 m ²	
	Bâtiment non chauffés, structure bois	400 m ²	
Informatique	Durée d'amortissement	3 ans	
	Ordinateurs avec tubes cathodiques	2	
	PC avec écran plat	36	
	imprimantes	7	
	Photocopieurs	2	
	Télécopieurs	1	
Machines	Durée d'amortissement	8 ans	
et véhicules	Poids des machines	175 t	

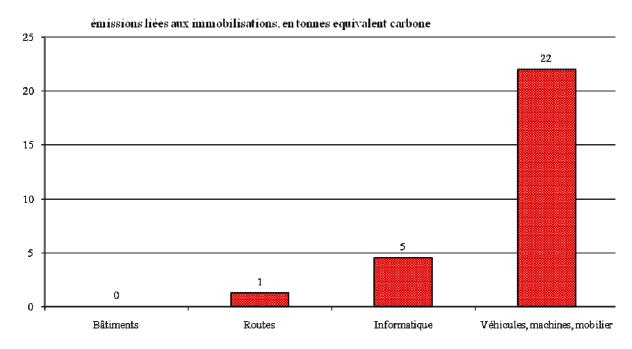


Figure 12 : Émissions de l'intégralité du poste immobilisations en éq C

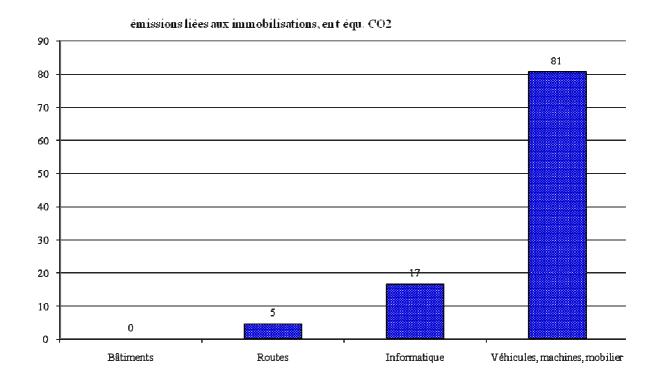


Figure 13 : Émissions de l'intégralité du poste immobilisations en éq CO₂

RECAPITULATIF PAR POSTE, EQU CARBONE

	Emissions		
AMORTISSEMENTS, équivalent carbone	kg équ. carbone	t équ. carbone	
Bâtiments	0	0	
Routes	1 250	1	
Informatique	4 517	5	
Véhicules, machines, mobilier	21 965	22	
TOTAL	27 732	28	

incertitude			Réductions visées, kg		
kg équ. carbone %			court terme	long terme	
0			0	0	
0	0%		0	0	
0	0%		0	0	
10 983	50%		0	5 394	
10 983	40%	total	0	5 394	
		% du poste	0%	19%	

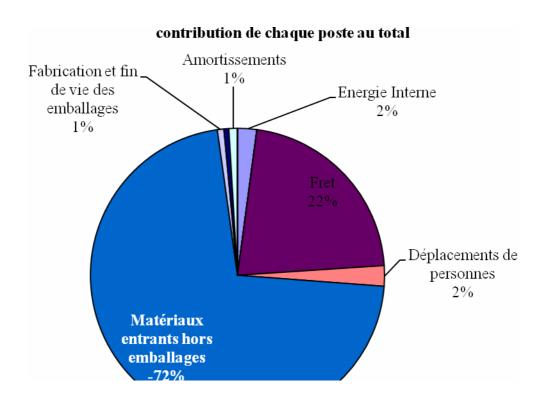
RECAPITULATIF PAR POSTE, EQU CO2

	émissions		
AMORTISSEMENTS Eq CO2	kg équ. CO2 t équ. CC		
Bâtiments	0	0	
Routes	4 583	5	
Informatique	16 561	17	
Véhicules, machines, mobilier	80 538	81	
TOTAL	101 683	102	

incertitude		
kg équ. CO2	%	
0		
0	0%	
0	0%	
40 269	50%	
40 269	40%	

Réd° visées,	kg équ CO2
court terme	long terme
0	0
0	0
0	0
0	19 778
0	19 778

Préconisation:


L'entreprise investie régulièrement dans du matériel de haute technologie et énergétiquement performant. Les meilleurs techniques disponibles ainsi que l'optimisation du parc d'outils est à l'étude.

X. Utilisation

Aucune énergie n'est nécessaire lors de la phase utilisation du ou des produits fabriqués par la société SIMONIN.

XI. Récapitulatif

objectifs de réduction par poste, en tonnes équivalent carbone

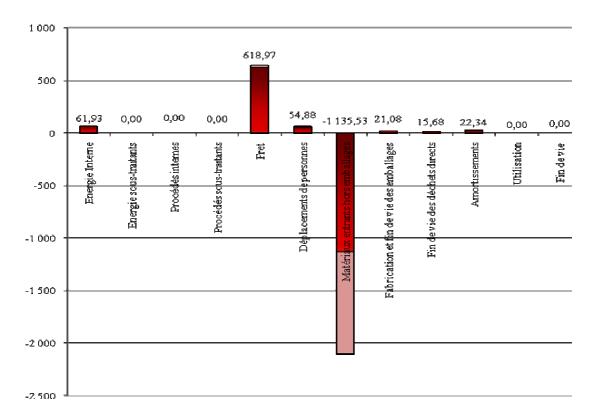


Figure 14 : Objectifs de réduction par poste en éq C

	Emissions, en tonnes équ. C	Incertitudes, en tonnes équ. C	Réductions visées, en tonnes équivalent carbone		
	comics equ. C	tomics equ. C	court terme	long terme	
Energie Interne	62	10	0	0	
Fret	641	66	11	23	
Déplacements de personnes	66	10	4	11	
Matériaux entrants hors					
emballages	-2 103	675	-553	-968	
Fabrication et fin de vie des emballages	21	4	0	0	
Fin de vie des déchets directs	16	8	0	0	
Amortissements	28	11	0	5	
TOTAL	-1 270	785	-538	-929	

long terme, en % du	valeur
montant du poste	résiduelle
0%	62
4%	619
17%	55
46%	-1 136
0%	21
0%	16
19%	22
	-341

Réduction visée à



Figure 15: Incertitude par poste

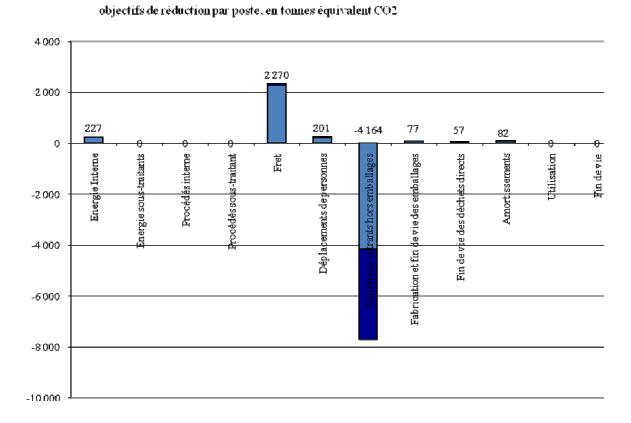


Figure 16 : Objectifs de réduction par poste en éq CO₂

Réduction visée à long terme, en % du montant du poste

valeur résiduelle

Emissions, en tonnes équ. CO2	Incertitudes, en tonnes équ. CO2	Réductions visées, en tonnes équivalent CO2
		court

			terme	long terme
Energie Interne	227	37	0	0
Fret	2 352	243	41	83
Déplacements de personnes	242	38	14	41
Matériaux entrants hors emballages	-7 713	2 475	-2 028	-3 549
Fabrication et fin de vie des emballages	77	16	0	0
Fin de vie des déchets directs	57	29	0	0
Amortissements	102	40	0	20
TOTAL	-4 655	2 878	-1 973	-3 406

0%	227
4%	2 270
17%	201
46%	-4 164
0%	77
0%	57
19%	82
73%	-1 249

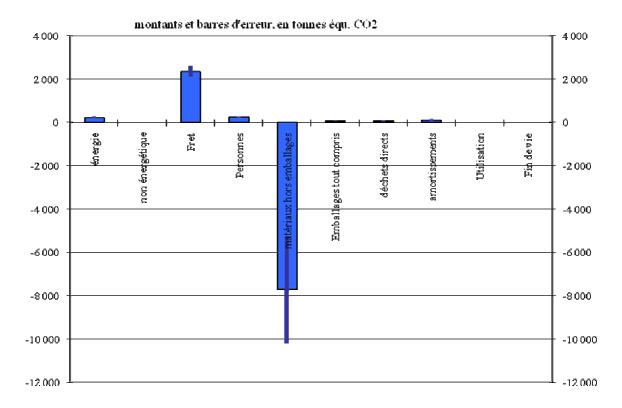


Figure 17 : incertitude par poste

XII. Simulation Economique

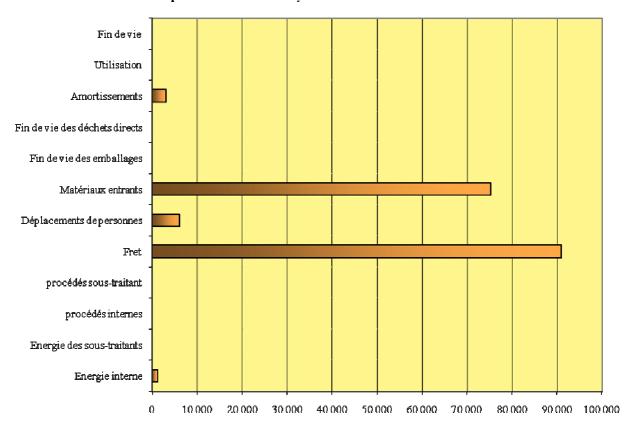
Pour évaluer la dépendance de l'entreprise aux variations du prix des énergies, et son niveau d'exposition à la mise en place d'une possible taxe carbone, à partir du bilan carbone que vous venez de réaliser, vous construirez les quatre scénarios suivants :

Modélisation du déplacement de la structure de couts

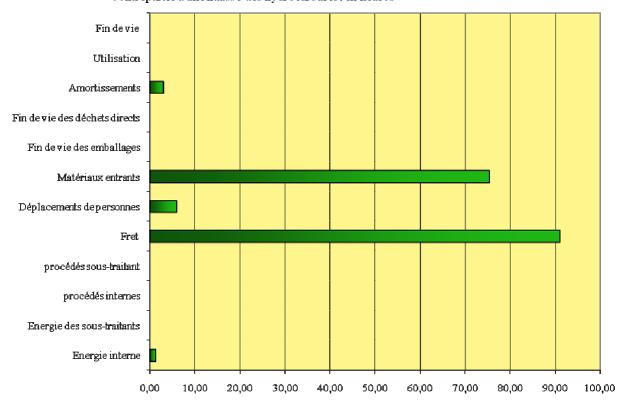
Hypothèse "hausse du prix des hydrocarbures"

ETAPE N°1 - Définition des hypothèses générales

Taux de change	
Taux de change baseline en dollars par euro	1,35
Taux de change futur en dollars par euro	1,35


Pétrole	
Prix du baril baseline (en dollars)	81,54
Prix futur du baril (en dollars)	100
kg CO2 par litre de pétrole	2,86
Nombre de litres dans un baril	159
Surcout en euros par kg équ. CO2	0,03
Surcout en euros par tonne équ. CO2	30

Gaz	
% de répercussion sur prix du gaz par défaut	80%
Prix du gaz baseline (\$ par MMBTU)	6
Prix futur du gaz (\$ par MMBTU)	7,08668138
kg CO2 par MMBTU	61
Surcout en euros par kg équ. CO2	0,01
Surcout en euros par tonne équ. CO2	13


Charbon	
% de répercussion sur prix du charbon	100%
Prix du charbon baseline (\$ par tonne)	60
Prix futur du charbon (\$ par tonne)	73,5835173
kg CO2 par tonne de charbon	2420
Surcout en euros par kg équ. CO2	0,00
Surcout en euros par tonne équ. CO2	4

Contrepartie d'une hausse des hydrocarbures, en Euros

Contrepartie d'une hausse des hydrocarbures, en keuros

RECAPITULATIF PROJET 1 (tonnes équivalent		
CO2)	Emissions	Incertitudes
Energie interne	227	37
Energie des sous-traitants	0	0
procédés internes	0	0
procédés sous-traitant	0	0
Fret	2 352	243
Déplacements de personnes	242	38
Matériaux entrants	-7 642	2 490
Fin de vie des emballages	7	2
Fin de vie des déchets directs	57	29
Amortissements	102	40
Utilisation	0	0
Fin de vie	0	0
TOTAL (tonnes)	-4 655	2 878

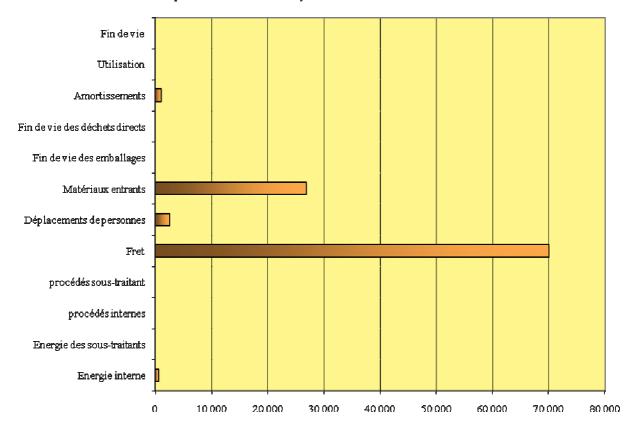
Euros de surcout	
Mediane	Plus ou moins
1 289	147
0	0
0	0
0	0
90 952	9 431
6 100	918
75 299	13 941
0	0
0	0
3 062	1 212
0	0
0	0
176 701	25 649

Surcouts en K€	
1	
0	
0	
0	
91	
6	
75	
0	
0	
3	
0	
0	
177	

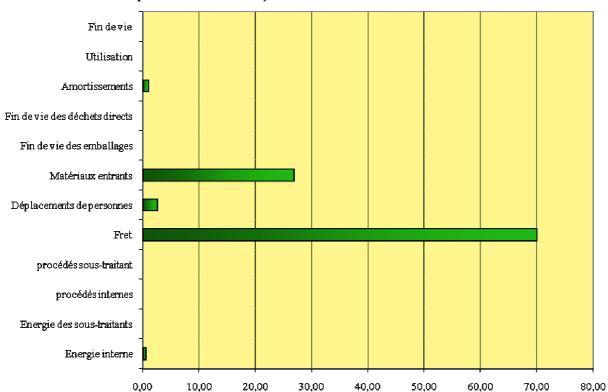
Modélisation du déplacement de la structure de couts Hypothèse "baisse du prix du dollar"

ETAPE N°1 - Définition des hypothèses générales

Taux de change	
Taux de change baseline en dollars par euro	1,35
Taux de change futur en dollars par euro	1,25


Pétrole	
Prix du baril baseline (en dollars)	81,54
Prix futur du baril (en dollars)	81,54
kg CO2 par litre de pétrole	2,86
Nombre de litres dans un baril	159
Surcout en euros par kg équ. CO2	0,01
Surcout en euros par tonne équ. CO2	11

Gaz	
% de répercussion sur prix du gaz par défaut	80%
Prix du gaz baseline (\$ par MMBTU)	6
Prix futur du gaz (\$ par MMBTU)	6
kg CO2 par MMBTU	61
Surcout en euros par kg équ. CO2	0,01
Surcout en euros par tonne équ. CO2	6


Charbon	
% de répercussion sur prix du charbon	100%
Prix du charbon baseline (\$ par tonne)	60
Prix futur du charbon (\$ par tonne)	60
kg CO2 par tonne de charbon	2420
Surcout en euros par kg équ. CO2	0,00
Surcout en euros par tonne équ. CO2	1

Contrepartie d'une hausse des hydrocarbures, en Euros

Contrepartie d'une hausse des hydrocarbures, en keuros

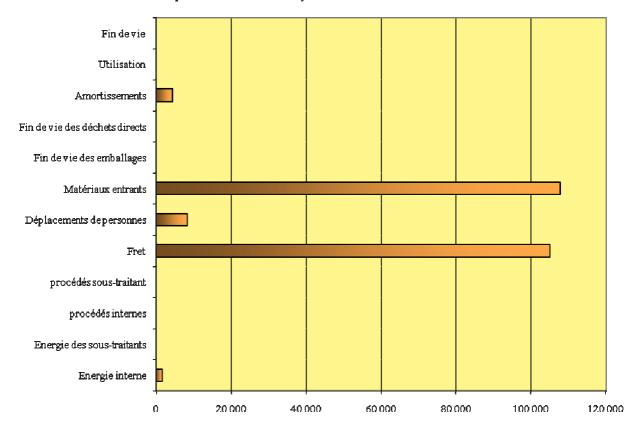
RECAPITULATIF PROJET 1 (tonnes équivalent		
CO2)	Emissions	Incertitudes
Energie interne	227	37
Energie des sous-traitants	0	0
procédés internes	0	0
procédés sous-traitant	0	0
Fret	2 352	243
Déplacements de personnes	242	38
Matériaux entrants	-7 642	2 490
Fin de vie des emballages	7	2
Fin de vie des déchets directs	57	29
Amortissements	102	40
Utilisation	0	0
Fin de vie	0	0
TOTAL (tonnes)	-4 655	2 878

Euros de surcout	
Mediane	Plus ou moins
611	79
0	0
0	0
0	0
70 032	7 341
2 647	421
26 850	5 047
0	0
0	0
1 082	428
0	0
0	0
101 221	13 316

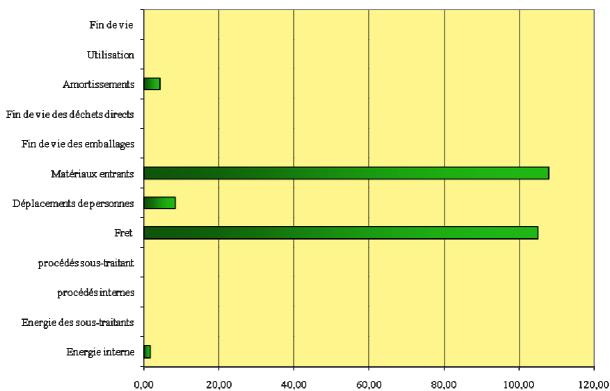
Surcouts en K€
1
0
0
0
70
3
27
0
0
1
0
0
101

Modélisation du déplacement de la structure de couts Hypothèse "baisse du prix du dollar et hausse des hydrocarbures" ETAPE N°1 - Définition des hypothèses générales

Taux de change	
Taux de change baseline en dollars par euro	1,35
Taux de change futur en dollars par euro	1,25


Pétrole	
Prix du baril baseline (en dollars)	81,54
Prix futur du baril (en dollars)	100
kg CO2 par litre de pétrole	2,86
Nombre de litres dans un baril	159
Surcout en euros par kg équ. CO2	0,04
Surcout en euros par tonne équ. CO2	43

Gaz	
% de répercussion sur prix du gaz par défaut	80%
Prix du gaz baseline (\$ par MMBTU)	6
Prix futur du gaz (\$ par MMBTU)	7,08668138
kg CO2 par MMBTU	61
Surcout en euros par kg équ. CO2	0,02
Surcout en euros par tonne équ. CO2	20


Charbon	
% de répercussion sur prix du charbon	100%
Prix du charbon baseline (\$ par tonne)	60
Prix futur du charbon (\$ par tonne)	73,5835173
kg CO2 par tonne de charbon	2420
Surcout en euros par kg équ. CO2	0,01
Surcout en euros par tonne équ. CO2	6

Contrepartie d'une hausse des hydrocarbures, en Euros

Contrepartie d'une hausse des hydrocarbures, en keuros

RECAPITULATIF PROJET 1 (tonnes équivalent CO2)	Emissions	Incertitudes
Energie interne	227	37
Energie des sous-traitants	0	0
procédés internes	0	0
procédés sous-traitant	0	0
Fret	2 352	243
Déplacements de personnes	242	38
Matériaux entrants	-7 642	2 490
Fin de vie des emballages	7	2
Fin de vie des déchets directs	57	29
Amortissements	102	40
Utilisation	0	0
Fin de vie	0	0
TOTAL (tonnes)	-4 655	2 878

Euros de surcout	
Mediane	Plus ou moins
1 744	192
0	0
0	0
0	0
104 972	10 831
8 414	1 252
107 769	19 901
0	0
0	0
4 388	1 738
0	0
0	0
227 288	33 914

Surcouts en K€
2
0
0
0
105
8
108
0
0
4
0
0
227

XIII. Extractions

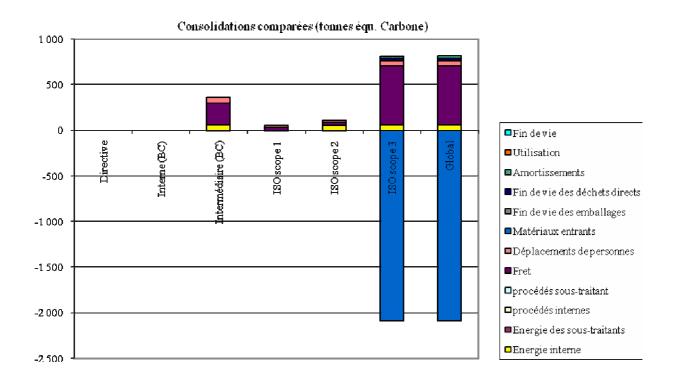


Figure 18 : Extractions en éqC

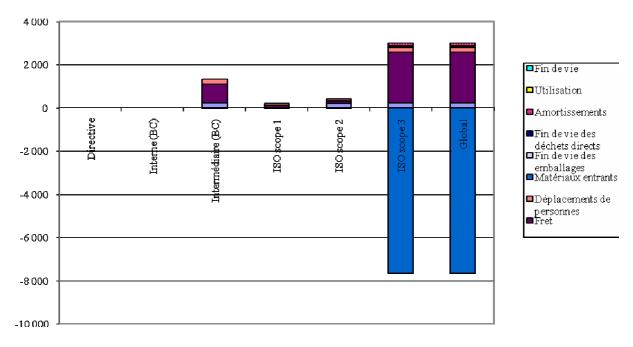


Figure 19 : Extractions en éqCO₂